
Ouverture
Contracts and aspects in Ada 2012

Conclusion

Contract-based Programming with Ada 2012

An experience report

Ada 2012 has checked “contracts” and “aspects” for
subprograms and types. Some of these are by definition static,
while others can be postponed to run-time.

The case example is a hosted telephone reception system,
where the core component is written in Ada 2012.

With currently available compilers, the big static analysis
benefits of using Ada are related to the basic type system,
which also existed in earlier versions of the standard, and the
major benefit of switching to Ada 2012 at the moment is in the
improved run-time checks.

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Contract-based Programming with Ada 2012
Experience report

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation
and

AdaHeads K/S

23rd August 2013

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Jacob Sparre Andersen
Currently:

Independent consultant.
Co-founder of AdaHeads K/S.
Co-owner of Koparo Ltd.
Software architect at AdaHeads.

Background:
PhD & MSc in experimental physics.
BSc in mathematics.
Has taught mathematics, physics and software
engineering.
Worked with bioinformatics, biotechnology and modelling
of investments in the financial market.

jacob@jacob-sparre.dk
www.jacob-sparre.dk

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

AdaHeads K/S

A software consulting company founded in 2011.
Four of the owners are active Ada developers:

Thomas Løcke
Kim Rostgaard Christensen
Jacob Sparre Andersen
Thomas Pedersen

The case example is the the core of the first system
AdaHeads K/S has been contracted to develop.

tl@adaheads.com krc@adaheads.com
jsa@adaheads.com tp@adaheads.com

www.adaheads.com

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Raison d’etre for Ada

In the 1970’s the US DoD noticed they had a problem with
software development.

To solve it they arranged a programming language design
competition with:

. . . three overriding concerns: program reliability
and maintenance, programming as a human activity,
and efficiency.

The result was Ada (1983).

(to make a long story short)

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Ada in a single slide

Procedural programming language.
Supports object oriented programming (encapsulation,
inheritance and dynamic dispatching).
Modular programming: Packages, child packages and
individual subprograms. Generic modules.
Separates declarations of subprograms and packages in
specifications and implementations.
Concurrent, distributed and real-time programming built in.
Types distinguished by name (both simple and composite
types).

Most recent Ada standard published by ISO in December 2012.

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Why we use Ada

The customer co-funding the development considers the
complete system mission critical1, and intends to use it for a
long time2. As the system is interacting with human callers and
receptionists, it is treated as a soft real-time system3.

And we like creating software in Ada4.

1Program reliability.
2Program maintenance
3Efficiency
4Programming as a human activity.

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Contracts and aspects in Ada 2012

New in Ada:
Pre- and postconditions:
Run-time checks at the call of and return from a
subprogram.
Type invariants:
Run-time checks on changes to a private type.
Dynamic subtype predicates:
Constraints on visible subtypes.
Static subtype predicates:
Static constraints on visible subtypes.

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Some checks in “old” Ada

Named “primitive” types:
No implicit conversions between different named types.
Parameter passing directions:
“in”, “out” or “in out” parameters to subprograms checked
at compile-time.
Range checks:
Array indexing is checked (typically only at run-time).
Subtypes with ranges:
Subtype ranges are checked (typically only at run-time).
Static coverage tests:
Case statements are checked for full coverage at
compile-time.

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Preconditions

From the Ada 2012 rationale:
A precondition . . . is an obligation on the caller to

ensure that it is true before the subprogram is called
and it is a guarantee to the implementer of the body
that it can be relied upon on entry to the body.

A reception requires at least one end-point:
function Create

(Title : in String;
Start_At : in String;
End_Points : in Receptions.

End_Point_Collection.Map;
Decision_Trees : in Receptions.

Decision_Tree_Collection.Map)
return Instance
with Pre => (not End_Points.Is_Empty);

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Postconditions

From the Ada 2012 rationale:
A postcondition . . . is an obligation on the

implementer of the body to ensure that it is true on
return from the subprogram and it is a guarantee to
the caller that it can be relied upon on return.

Telling what changes a subprogram makes to an object:
procedure Status_Data

(Instance : in out Object;
Request : in AWS.Status.Data)

with Post => Instance.Has_Status_Data;
-- Set the client request data. This makes the

response object aware of
-- Cookies, Sessions, GET/POST request parameters

and everything else that
-- the AWS.Status.Data object contains.

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Type invariants

From the Ada 2012 rationale:

package Places is
type Disc_Point is private;
... --various operations on disc points

private
type Disc_Point is

record
X, Y: Float range -1.0 .. +1.0;

end record
with Type_Invariant

=> Disc_Point.X ** 2 + Disc_Point.Y ** 2 <= 1.0;
end Places;

(not used in Alice)

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Dynamic subtype predicates

Limiting the length of a string subtype to what our database
allocates storage for:

subtype Organization_URI is String
with Dynamic_Predicate => (Organization_URI’Length

<= 256);

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Static subtype predicates

Inspired by the Ada 2012 rationale:

procedure Seasons is
type Months is (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec);

subtype Summer is Months
with Static_Predicate => Summer in Nov .. Dec |

Jan .. Apr;

A_Summer_Month : Summer;
begin

A_Summer_Month := Jul;
end Seasons;

The compiler reports:
warning: static expression fails static predicate check on "Summer"

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Coverage check

case Level is
when Debug =>

System_Message.Debug.Dial_Plan (Message);
when Information =>

System_Message.Info.Dial_Plan (Message);
when Notice =>

System_Message.Notice.Dial_Plan (Message);
when Warning =>

System_Message.Warning.Dial_Plan (Message);
when Error =>

System_Message.Error.Dial_Plan (Message);
when Critical =>

System_Message.Critical.Dial_Plan (Message);
when Alert =>

System_Message.Alert.Dial_Plan (Message);
when Emergency =>

System_Message.Emergency.Dial_Plan (Message);
end case;

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Static analysis with Ada 2012

Static (compile-time) checking of contracts and aspects is
currently only implemented, where it is required by the
language standard – and for static subtype predicates.

For now, the big static analysis benefits of using Ada are
related to the basic type system, which also existed in earlier
versions of the standard, and the major benefit of switching to
Ada 2012 at the moment is in the improved run-time checks5

(and readability).

5Although we admittedly haven’t yet had cases where Ada 2012 specific
run-time checks have found errors in our software.

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

Ouverture
Contracts and aspects in Ada 2012

Conclusion

Contact

Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation

jacob@jacob-sparre.dk
http://www.jacob-sparre.dk/

Source text repositories:
https://github.com/AdaHeads/Alice/

https://github.com/AdaHeads/libdialplan/

https://github.com/AdaHeads/libesl/

Jacob Sparre Andersen Contract-based Programming with Ada 2012 Experience report

http://www.jacob-sparre.dk/
https://github.com/AdaHeads/Alice/
https://github.com/AdaHeads/libdialplan/
https://github.com/AdaHeads/libesl/

	Ouverture
	Contracts and aspects in Ada 2012
	Conclusion

