
Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Contract-based Programming in Ada 2012

A tutorial on how to use the Ada 2012 features for specifying
detailed, checked contracts for types and subprograms1.

Contracts document constraints on how types and
subprograms behave, but unlike comments they are checked –
either by when the program is compiled or on-the-fly as the
program is running.

Ada 2012 contract aspects will be presented together with a set
of guidelines for using contract aspects consistently. The
tutorial will conclude with a live test of the guidelines on some
example source text.

1"classes, functions, and methods" if you aren’t an Ada programmer yet.
Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Contract-based Programming in Ada 2012
A Tutorial

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation

1st February 2014

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Jacob Sparre Andersen
Currently:

Independent consultant.
Co-founder of AdaHeads K/S.
Ada guru and software architect at
AdaHeads K/S.

Background:
PhD & MSc in experimental physics.
BSc in mathematics.
Has taught mathematics, physics and software
engineering.
Has worked with bioinformatics, biotechnology and
modelling of investments in the financial market.

jacob@jacob-sparre.dk
www.jacob-sparre.dk

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Raison d’etre for Ada

In the 1970’s the US DoD noticed they had a problem with
software development.

To solve it they arranged a programming language design
competition with:

. . . three overriding concerns: program reliability
and maintenance, programming as a human activity,
and efficiency.

The result was Ada (1983).

(to make a long story short)

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Ada in a single slide

Procedural programming language.
Supports object oriented programming (encapsulation,
inheritance and dynamic dispatching).
Modular programming: Packages, child packages and
individual subprograms. Generic modules.
Separates declarations of subprograms and packages in
specifications and implementations.
Concurrent, distributed and real-time programming built in.
Types distinguished by name (both simple and composite
types).

Most recent Ada standard published by ISO in December 2012.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Contracts and aspects in Ada 2012

New in Ada 2012:
Pre- and postconditions:
Run-time checks at the call of and return from a
subprogram.
Type invariants:
Run-time checks on changes to a private type.
Dynamic subtype predicates:
Constraints on visible subtypes.
Static subtype predicates:
Static constraints on visible subtypes.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Some checks in “old” Ada

Named “primitive” types:
No implicit conversions between different named types.
Parameter passing directions:
“in”, “out” or “in out” parameters to subprograms checked
at compile-time.
Range checks:
Array indexing is checked (typically only at run-time).
Subtypes with ranges:
Subtype ranges are checked (typically only at run-time).
Static coverage tests:
Case statements are checked for full coverage at
compile-time.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Preconditions

From the Ada 2012 rationale:
A precondition . . . is an obligation on the caller to

ensure that it is true before the subprogram is called
and it is a guarantee to the implementer of the body
that it can be relied upon on entry to the body.

You can only write to open files:

procedure Put (File : in File_Type;
Item : in String)

with Pre => (Is_Open (File));

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Postconditions

From the Ada 2012 rationale:
A postcondition . . . is an obligation on the

implementer of the body to ensure that it is true on
return from the subprogram and it is a guarantee to
the caller that it can be relied upon on return.

The line number of a file is incremented when you write a line
to it:

procedure Put_Line (File : in File_Type;
Item : in String)

with Pre => (Is_Open (File)),
Post => (Line (File) = Line (File)’Old + 1);

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Type invariants

Make sure that Disc_Point objects stay on or inside the unit
circle:

package Places is
type Disc_Point is private;
-- various operations on disc points

private
type Disc_Point is

record
X, Y : Float range -1.0 .. +1.0;

end record
with Invariant => Disc_Point.X ** 2 +

Disc_Point.Y ** 2 <= 1.0;
end Places;

Adapted from the Ada 2012 rationale.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Dynamic subtype predicates

Subtype predicates are a kind of constraints on subtypes.

This subtype of Integer can only contain primes:

subtype Prime is Integer range 2 .. Integer’Last
with Dynamic_Predicate
=> (not (for some N in 2 .. Prime - 1

=> Prime mod N = 0));

Organization_URI strings can be up to 256 characters long:

subtype Organization_URI is String
with Dynamic_Predicate => (Organization_URI’Length

<= 256);

Before Ada 2012 you would have to use the package
Ada.Strings.Bounded to sort of achieve this effect.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Static subtype predicates

Inspired by the Ada 2012 rationale:

procedure Seasons is
type Months is (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec);
subtype Summer is Months

with Static_Predicate => Summer in Nov .. Dec |
Jan .. Apr;

A_Summer_Month : Summer;
begin

A_Summer_Month := Jul;
end Seasons;

The compiler identifies the problem:
warning: static expression fails static predicate check on "Summer"

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Coverage check
case Level is

when Debug =>
System_Message.Debug.Dial_Plan (Message);

when Information =>
System_Message.Info.Dial_Plan (Message);

when Notice =>
System_Message.Notice.Dial_Plan (Message);

when Warning =>
System_Message.Warning.Dial_Plan (Message);

when Error =>
System_Message.Error.Dial_Plan (Message);

when Critical =>
System_Message.Critical.Dial_Plan (Message);

when Alert =>
System_Message.Alert.Dial_Plan (Message);

when Emergency =>
System_Message.Emergency.Dial_Plan (Message);

end case;

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Guidelines – Types, constraints and invariants

Make sure your type declaration is as detailed in its constraints
as possible.

Declaring a new type or a subtype depends on what level
of inter-type compatibility you want2.
Put an appropriate constraint on the range of values the
(sub)type can have.
Add any extra constraints as predicate (non-private types)
or invariant (private types) aspects.

2And if there is a type to derive from.
Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Example – Types, constraints and invariants

Primes are integers:

subtype Prime is Integer;

... larger than 1:

subtype Prime is Integer range 2 .. Integer’Last;

... and have no other factors than 1 and the prime itself:

subtype Prime is Integer range 2 .. Integer’Last
with Dynamic_Predicate
=> (not (for some N in 2 .. Prime - 1

=> Prime mod N = 0));

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Guidelines – Subprograms and argument declarations

Make sure that you declare the arguments for your
subprograms as specifically as possible.

Select the proper direction (“in”, “out” or “in out”) for each
of the arguments to a subprogram.
Select as specific a (sub)type as possible for each of the
arguments to a subprogram.
Use preconditions (postconditions) to declare stronger
constraints on the input (output) values than those implied
by the selected subtypes.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Example – Subprograms and argument declarations

We want to be able to increment a counter by arbitrary steps.
We use (“in”) the value of both the counter and the step size to
generate (“out”) a new value for the counter:

procedure Increment (Counter : in out Integer;
Step : in Integer);

We count from zero and up (natural numbers). An increment is
by one or more (positive numbers):

procedure Increment (Counter : in out Natural;
Step : in Positive);

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Example – Subprograms and argument declarations

There is an upper limit (Natural’Last) to how far we can count
with our selected type; and once we’ve incremented the
counter it must be larger than zero:
procedure Increment (Counter : in out Natural;

Step : in Positive)
with Pre => (Counter < Natural’Last),

Post => (Counter > 0);

We shouldn’t attempt an increment so large that we go
beyound the upper limit for how far we can count (Natural’Last):
procedure Increment (Counter : in out Natural;

Step : in Positive)
with Pre => (Counter < Natural’Last) and

(Step <= Natural’Last - Counter),
Post => (Counter > 0);

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Guidelines – Preconditions

What are the requirements of your subprograms?

Do some of your subprograms have some special
requirements, which should be met before they can be
called?
Can a subprogram only be called once?
Can a subprogram only be called when the system is in a
specific state?

This can be documented with appropriately formulated
preconditions to the subprograms.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Examples – Preconditions

If we want to write to a file, it should be open and writable:

procedure Put (File : in File_Type;
Item : in Character)

with Pre => (Is_Open (File)) and
(Mode (File) = Out_File or
Mode (File) = Append_File);

Initialise only once:

procedure Initialise
with Pre => (State = Not_Initialised);

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Guidelines – Postconditions from preconditions

Do post- and preconditions match for likely sequences of calls
to your subprograms?

If one subprogram should be callable after a call to another
one (operating on some common data), then the
precondition corresponding to the common data on the
second call should be included in the promise made in the
postcondition of the first call.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Example – Postconditions from preconditions

A likely call sequence: open a file; write to the file.

Here is one subprogram for writing data to a file:

procedure Put_Line (File : in File_Type;
Item : in String)

with Pre => (Is_Open (File)),
Post => (Line (File) = Line (File)’Old + 1);

As “Put_Line” has the precondition “Is_Open (File)”, the sub-
program should have a postcondition fulfilling this to be useful:

procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String)

with Post => (Is_Open (File)) or
(raise Name_Error);

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Live demonstration

Demonstrating the guidelines on an example program provided
by Didier Willame (who is going to be the next speaker here).

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Compile-time checking of contracts

Static (compile-time) checking of contracts and aspects is
currently only implemented, where it is required by the
language standard – and in some cases for static subtype
predicates.

I hope that we in the future will see more cases of compilers
checking contracts already at compile-time, and not just
inserting the checks in the running code.

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

Contracts and aspects in Ada 2012
Guidelines for consistent use

Live demonstration

Contact

Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation

jacob@jacob-sparre.dk
http://www.jacob-sparre.dk/

You can find my Open Source software repositories at:
http://repositories.jacob-sparre.dk/

Jacob Sparre Andersen Contract-based Programming in Ada 2012 A Tutorial

http://www.jacob-sparre.dk/
http://repositories.jacob-sparre.dk/

	Contracts and aspects in Ada 2012
	Guidelines for consistent use
	Live demonstration

