
Types
Subprograms

Guidelines
Conclusion

Contract-based Programming
A Route to Finding Bugs Earlier

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation

January 2015

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Contract-based Programming

A software development technique, used to find programming
errors earlier in the development process.

In its strictest form, the “contracts” are checked as a part of the
compilation process, and only a program which can be proven
to conform with the contracts will compile.

In a less strict form, it is more similar to “preventive debugging”,
where the contracts are inserted as run-time checks, which
makes it more likely to identify errors during testing.

In this presentation I will focus on how Ada 2012 supports
contract-based programming, and give some guidelines on how
to use the technique consistently.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Raison d’etre for Ada

In the 1970’s the US DoD noticed they had a problem with
software development.

To solve it they arranged a programming language design
competition with:

. . . three overriding concerns: program reliability
and maintenance, programming as a human activity,
and efficiency.

The result was Ada (1983).

(to make a long story short)

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Ada in a single slide

Procedural programming language.
Supports object oriented programming (encapsulation,
inheritance and dynamic dispatching).
Modular programming: Packages, child packages and
individual subprograms. Generic modules.
Separates declarations of subprograms and packages in
specifications and implementations.
Concurrent, distributed and real-time programming built in.
Types distinguished by name (both simple and composite
types).

Most recent Ada standard published by ISO in December 2012.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Structure of the presentation

Types:
A quick tour of the capabilities of the Ada type-system as it
relates to contract-based programming.
Subprograms:
An introduction to specifying the requirements and
promises of subprograms in Ada.
Guidelines:
Guidelines for applying contract-based programming
consistently to types, subprograms and across whole
packages/libraries.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Range constraints
Generalised constraints
Summary

Types

We can declare different types representing different kinds of
values:

type Input_Voltage is delta 0.001 range -5.0 .. +5.0;

type Colours is (Red, Green, Blue);
type Months is (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec);

type Apples is range 0 .. 10_000_000;
type Oranges is range 0 .. 10_000_000;

type Disc_Point is private;

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Range constraints
Generalised constraints
Summary

Types (continued)

The point of specifying a type is two-fold:
To specify a collection of possible values and operations
on the values. – For example integer values from 0 to
10’000’000 with the operations +, −, ×, / and modulus.
To separate different kinds of values. – For example to
keep counts of apples and oranges separate, if that is
intended.

Note that it is possible to have two separate types being able to
represent exactly the same set of values.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Range constraints
Generalised constraints
Summary

Range constraints

In the previous examples we declared types each with some
possible values.

If the type has a simple ordering, it may be possible to declare
a subtype (subset) of the base type with more limiting upper
and/or lower bounds on the possible values.

In the Ada standard library Natural is made a subset of
Integer with a different lower bound:

subtype Natural is Integer range 0 .. Integer’Last;

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Range constraints
Generalised constraints
Summary

Generalised constraints

We might want to put any, arbitrary constraints on which values
are allowed in a subtype of a type.

Summer in the Southern hemisphere:

subtype Summer is Months
with Static_Predicate => Summer in Nov .. Dec |

Jan .. Apr;

Primes:

subtype Prime is Integer range 2 .. Integer’Last
with Dynamic_Predicate
=> (for all N in 2 .. Prime - 1

=> Prime mod N /= 0);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Range constraints
Generalised constraints
Summary

Generalised constraints (continued)

Make sure that Disc_Point objects stay on or inside the unit
circle:

package Places is
type Disc_Point is private;
-- various operations on disc points

private
type Disc_Point is

record
X, Y : Float range -1.0 .. +1.0;

end record
with Invariant => Disc_Point.X ** 2 +

Disc_Point.Y ** 2 <= 1.0;
end Places;

Adapted from the Ada 2012 rationale.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Range constraints
Generalised constraints
Summary

Types and type invariants (a kind of summary)

Contract-based programming is typically considered to be an
extension of strong, static typing.

Contract-based programming extends the concept of types by
allowing the programmer to declare “subtypes” whose values
have to fullfill a constraint described in the form of an arbitrary
boolean expression.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions
Summary

Globals and formal parameters

When we declare a subprogram, the first steps are to declare:
Which formal parameters and global (state) variables are
used and/or affected by the subprogram.
If they are used and/or changed.
The type of the formal parameters. (The type of the global
variables must be declared elsewhere.)

procedure Increment (Counter : in out Integer;
Step : in Integer);

function Voltage return Input_Voltages
with Globals => (Input => GPIO);

(the latter example is not checked by Ada compilers yet)
Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions
Summary

Subtypes for formal parameters

The next step is to narrow down the types of the formal
parameters with subtypes where it is appropriate.

We count from zero and up (natural numbers). An increment is
by one or more (positive numbers):

procedure Increment (Counter : in out Natural;
Step : in Positive);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions
Summary

Preconditions for calling

In addition to specifying subsets of allowed values for formal
parameters, we may have some conditions on the system
state and formal parameters before it makes sense to call the
subprogram.

These conditions are known as preconditions.

You can only write to open, writable files:

procedure Put (File : in File_Type;
Item : in String)

with Pre => (Is_Open (File)) and then
(Mode (File) in Out_File | Append_File);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions
Summary

Preconditions for calling (continued)

Continuing our Increment example...

There is an upper limit (Natural’Last) to how far we can
count with our selected type:

procedure Increment (Counter : in out Natural;
Step : in Positive)

with Pre => (Counter < Natural’Last);

We should not attempt an increment so large that we go beyond
the upper limit of how far we can count (Natural’Last):

procedure Increment (Counter : in out Natural;
Step : in Positive)

with Pre => Counter <= Natural’Last - Step;

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions
Summary

Postconditions of subprogram calls

The implementor of a subprogram may make certain promises
(guarantees) about the state of the system, any return values
and modified formal parameters once a subprogram returns.

These promises are known as postconditions.

The line number of a file is incremented when you write a line
to it:
procedure Put_Line (File : in File_Type;

Item : in String)
with Pre => (Is_Open (File)) and then

(Mode (File) in Out_File | Append_File),
Post => (Line (File) = Line (File)’Old + 1);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions
Summary

Postconditions of subprogram calls (continued)

Continuing our Increment example...

Once we’ve incremented the counter it must be Step larger
than the old value:

procedure Increment (Counter : in out Natural;
Step : in Positive)

with Pre => Counter <= Natural’Last - Step,
Post => Counter = Counter’Old + Step;

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions
Summary

Subprograms (a kind of summary)

Contract-based programming means that you:
Specify which global variables are read and/or modified
by each subprogram.
Specify if global variables and formal parameters are read
from and/or written to.
Specify what each subprogram requires of the global
system state and its formal parameters.
Formalise your promises about the global system state,
any return values and the values of the formal parameters
as a subprogram returns.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Guidelines: Types, constraints and invariants

Make sure your type declaration is as detailed as possible.

Declaring a new type or a subtype depends on what level
of inter-type compatibility you want1.
Put an appropriate constraint on the range of values the
(sub)type can have.
Add any extra constraints as predicate (non-private types)
or invariant (private types) aspects.

1And if there is a type to derive from.
Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Example: Types, constraints and invariants

Primes are integers:

subtype Prime is Integer;

... larger than 1:

subtype Prime is Integer range 2 .. Integer’Last;

... and have no other factors than 1 and the prime itself:

subtype Prime is Integer range 2 .. Integer’Last
with Dynamic_Predicate
=> (not (for some N in 2 .. Prime - 1

=> Prime mod N = 0));

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Guidelines: Subprograms and argument declarations

Make sure that you declare the arguments for your
subprograms as specifically as possible.

Select the proper direction (“in”, “out” or “in out”) for each
of the arguments to a subprogram.
Select as specific a (sub)type as possible for each of the
arguments to a subprogram.
Use preconditions (postconditions) to declare stronger
constraints on the input (output) values than those implied
by the selected subtypes.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Example: Subprograms and argument declarations

We want to be able to increment a counter by arbitrary steps.
We use (“in”) the value of both the counter and the step size to
generate (“out”) a new value for the counter:

procedure Increment (Counter : in out Integer;
Step : in Integer);

We count from zero and up (natural numbers). An increment is
by one or more (positive numbers):

procedure Increment (Counter : in out Natural;
Step : in Positive);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Example: Subprograms and argument declarations . . .

There is an upper limit (Natural’Last) to how far we can count
with our selected type:

procedure Increment (Counter : in out Natural;
Step : in Positive)

with Pre => Counter <= Natural’Last - Step;

Once Increment returns Counter has changed:

procedure Increment (Counter : in out Natural;
Step : in Positive)

with Pre => Counter <= Natural’Last - Step,
Post => Counter = Counter’Old + Step;

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Guidelines: Subprogram preconditions

What are the requirements of your subprograms?

Do some of your subprograms have some special
requirements, which should be met before they can be
called?
Can a subprogram only be called once?
Can a subprogram only be called when the system is in a
specific state?

This can be documented with appropriately formulated
preconditions to the subprograms.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Example: Subprogram preconditions

If we want to write to a file, it should be open and writable:

procedure Put (File : in File_Type;
Item : in String)

with Pre => (Is_Open (File)) and then
(Mode (File) in Out_File | Append_File);

Initialise only once:

procedure Initialise
with Pre => (State = Not_Initialised);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Packages

While we typically don’t write contracts for entire packages, it
does make sense to take a broader view of the pre- and
postconditions of all the subprograms declared in a package.

If one specifies contracts one subprogram at a time, one may
miss contract details on one subprogram, which would be
helpful for another subprogram.

The following slides contain a few guidelines for ensuring
consistent pre- and postconditions for entire packages.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Guidelines: Aligning pre- and postconditions

Do post- and preconditions match for likely sequences of calls
to the declared subprograms?

1 Sketch likely, valid sequences of subprogram calls.
2 For each call in the identified sequences:

a Verify that the documented state of the input data matches
constraints and preconditions for the called subprogram.

b If there is a mismatch: Attempt to narrow down the
documented, possible output values of the source of the
input data (by changing constraints and postconditions).

c Identify the documented state of the modified parameters
after the call.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Example: Aligning pre- and postconditions

We look at a simple Text I/O package with some contracts
added:

procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String);

procedure Close (File : in out File_Type);

procedure Put_Line (File : in File_Type;
Item : in String)

with Pre => (Is_Open (File)) and then
(Mode (File) in Out_File | Append_File),

Post => (Line (File) = Line (File)’Old + 1);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Example: Aligning pre- and postconditions

1 A likely call sequence:

Open (File => Target,
Name => "output.txt",
Mode => Out_File);

Put_Line (File => Target,
Item => "Hello.");

Close (File => Target);

2 Open:
a File, Name and Mode all ok. No preconditions.
b (no mismatch)
c Target can have any valid File_Type value.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Example: Aligning pre- and postconditions

2 Put_Line:
a Preconditions on File not matched by the documented

constraints on Target. Item ok.
b Target was last modified by Open, so we add some

appropriate postconditions there:

procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String)

with Post => (Is_Open (File) and
Text_IO.Mode (File) =

Mode);

c We now know that Target is open and has the mode
Out_File.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Types
Subprograms
Packages

Example: Aligning pre- and postconditions

2 Close:
a Close has no preconditions, so Target matches the

documented requirements for the formal parameter File.
b (no mismatch)
c We know that Target has been changed, so it can have any

valid File_Type value.

As some of you may have noticed, I have omitted to document
that it is an error to open a file which already is open, or to
close one which already is closed. – This is left as an exercise.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Compile-time checking of contracts

Static (compile-time) checking of contracts and aspects is
currently only implemented, where it is required by the
language standard – and in some cases for static subtype
predicates.

In the future we will most likely see more cases of compilers or
tools checking contracts already at compile-time, and not just
inserting the checks in the running code.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Guidelines
Conclusion

Contact

Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation

jacob@jacob-sparre.dk
http://www.jacob-sparre.dk/

Examples from this presentation:
http://www.jacob-sparre.dk/reliability/

fosdem-2015-examples.zip

You can find my Open Source software repositories at:
http://repositories.jacob-sparre.dk/

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

http://www.jacob-sparre.dk/
http://www.jacob-sparre.dk/reliability/fosdem-2015-examples.zip
http://www.jacob-sparre.dk/reliability/fosdem-2015-examples.zip
http://repositories.jacob-sparre.dk/

	Types
	Types
	Range constraints
	Generalised constraints
	Summary

	Subprograms
	Globals and formal parameters
	Subtypes for formal parameters
	Preconditions
	Postconditions
	Summary

	Guidelines
	Types
	Subprograms
	Packages

	Conclusion

